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STEREOCHEMISTRY OF PHOTOSOLVOLYSIS OF A CHIRAL, 180-LABELED l-ARYLETHYL ACETATE 

David A. Jaeger* and George H. Angelos 

Department of Chemistry, University of Wyoming, Laramie, Wyoming 82071 

Abstract: -- The stereochemistry of photosolvolysis of (R)-(+)-l-(3,5_dimethoxyphenyl)ethyl 
acetate-ether-180 in methanol-water and 2,2,2-trifluoroethanol has been determined. An ion 
pair intermediate was detected in the latter solvent. 

Photoinduced solvolysis has been observed' with numerous substituted and unsubstituted 

benzyl systems; structure-reactivity correlations and mechanism have been the subjects of re- 

cent reports. 192 

of a chiral, 
18 

This communication describe,s the stereochemical course of the photosolvolysis 

O-labeled l-arylethyl acetate, (IJ)-(+)-l-(3,5_dimethoxyphenyl)ethyl acetate- 

ether-l80 (&). 

Acetate 1 was prepared as follows. - The P-toluenesulfonic acid-catalyzed exchange of 

3',5'-dimethoxyacetophenone (2) (Aldrich) with normalized H2 180 (10.2% l8 0) 

- 

yielded -carbonyl- 
18 
0, 5.9% excess 180,3 which was reduced with a chiral reagent 

4 
derived from LiA1H4 and (-)- 

trans-2-ethyl-4-hydroxymethyl-5-phenyloxazoline to give (R)-(+)-l-(3,5_dimethoxyphenyl)ethanol- - 

hydroxy-180 [(+)-z].5 Integration of the benzyl proton quartets at 6 15.4 and 15.9 (larger) in 

the 'H NMR spectrum (100 MHz, CDC13) of this material in the presence of tris-[(3-heptafluoro- 

propylhydroxymethylene)-<-camphoratoleuropium (III) [Eu(HFc)~] indicated that the enantiomeric 

excess (ee) was 44%, - 6 and it was converted with acetic anhydride-pyridine to (+)-1, [ali +33.0 

* 0.8O (c 0.876, CHC13), 6.1% excess 180.3 

Acetate (4)-L was irradiated in both 50% (v/v) methanol-water and 2,2,2_trifluoroethanol 

(TFE) under conditions which yielded no thermal reaction. Products7 3, 4, 5, 1, and 8 resulted - 

in the former solvent, and 5, 5, and 7 in the latter. - Uniformly, 50 ml of a 0.02 M solution of - 

(+)-1 was added to a quartz tube (2.5 cm i.d.) equipped with a fritted glass inlet tube and an 

Ar AT 
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$8 

CH3 -?-H CH3 
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(E)-(+)-& 3_,R=H 5, X = H 8 

4, R = CH3 7, X = CH3 

2, R = CH2CF3 Ar = 3,5-(CH30)2C6H3- 

outlet. The tube was placed 7 cm (center to center) from a quartz well fitted with a 450-W 

medium pressure Hanovia lamp and a 2 mm Corex sleeve. The solution was degassed with purified 

nitrogen for 45 min prior to and during irradiation at room temperature: 150 and 200 min for 

aqueous methanol and TFE, respectively. After irradiation, the aqueous methanol reaction mix- 
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ture was worked up by addition to saturated aqueous NaCl followed by extraction with ether, and 

the TFE reaction mixture by distillation at 25°C (40 mm Hg). In each case, an internal stan- 

dard (E-octadecane) and hexane were added to the resultant product mixture, and analysis was 

performed by GLC (15 ft x 4 in; 8% SE-30 on 60-80 mesh Chromosorb W; helium) with correction 

for differences in thermal response ratios. The results are summarized in Table I. 

After GLC analysis, the product mixture was column-chromatographed on silica gel with 

ether-hexane elution, and recovered 1 and products 2 and 4 (in aqueous methanol) and 2 (in TFE) 

were purified by GLC. The optical properties of these materials are summarized in Table II. 
8a 

Recovered 1 was analyzed3 for total 
18 

O-content and then saponified with KOH in aqueous 

methanol. Resultant 2 was then re-converted to _1, which was analyzed3 to give the 180-content 

at the ether position of recovered 1 and hence 
18 8b 

These results are summar- _ O-equilibration. 

ized in Table II also. The ee of (-)-A from run 1 was < 5% by - 'H NMR analysis (100 MHz, CDC13) 

with Eu(HFC)~ based on the CJ-CH~O singlets at 6 6.44 and 6.28 (larger). If (-)-A is assigned 

the (S)-configuration, 
9 

then 4 was produced from (+)-1 with a slight net inversion of configura- 

tion. Controls using acetic acid-% in both aqueous methanol and TFE demonstrated the intramo- 

lecular character of the 
18 

O-equilibration and racemization processes. 

10 
A mechanistic explanation of the above results involves partitioning of photoexcited 1 

between (l), an allowed [1,3]-sigmatropic shift of the benzyl carbon with retention of configu- 

ration from ether to carbonyl oxygen, and (2), heterolytic and homolytic cleavages of the 

benzyl carbon-oxygen bond to give ion pair 2 and radical pair lo, respectively. The 1-arylethyl 

9 
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18 

10 - 

radical of 10 can abstract a hydrogen atom to give 5 or couple with methyl radical formed by - 

decarboxylation of the acetoxy radical to give 1. 
11 

It is unlikely that 10 collapses to 1 to a 
12 - 

- 

significant degree since the acetoxy radical readily decarboxylates. Chiral ion pair 2 can 

undergo (a) collapse with retention to give 180-scrambled (+)-1, (b) reorganization to give the 

enantiomeric ion pair, (c) capture by solvent to give inverted solvolysis product, (d) reduc- 

tion by hydride abstraction 
13 

to give 5, (e) elimination to give 8, and (f) dissociation. 

In both TFE and aqueous methanol, 
18 

O-scrambling of 1: occurred but with and without race- 

mization, respectively. Thus in both solvents concerted pathway (1) and/or process (a) contri- 

buted to 
18 

O-scrambling, and in TFE process (b) followed by collapse to (->-1 did also. The 

optical properties of the solvolysis products in both solvents are consistent with their predom- 

inant formation by capture of dissociated carbonium ion. However, the low net inversion for fi 

suggests a minor contribution by process (c) with methanol. 
14 

McKenna ett.2a observed low net 

inversion also in the photosolvolysis of (-)-1-phenylethyltrimethylammonium iodide in methanol. 



-305 

Table I. Product Composition and Percent Yields for Photolysis of 0.2 g Solutions of (+)-1. - 

- 
Run Solvent 1 3 4 5 6 7 8 - - - 

1 CH30H-H20 25 31 27 2.1 2.4 0.4 

2 CH30H-H20 20 33 32 2.3 2.3 0.4 

3 CF3CH20H 14 47 6.7 6.7 

4 CF3CH20H 15 50 6.4 6.2 

Table II. Optical Rotations of Recovered 1 and Products, and Percent Excess 
18 

0 and 180-Equil- 

ibration of Recovered 1 _* 

[a]25 (c 0 
D -* 

758 to 0 . 854 , % Excess 180 in 

CHC13) unless noted otherwise Recovered - 1 p 0 18 O-Equili- 

Run 1" zb cb 5 Totaleyf Ether Postiione brationg 

1 32.4' 0.5O -2.9O 6.5 4.4 64 

2 31.9O 0.5O -2.8' 6.4h 4.4 64 

3 26.2" OC 6.8 3.4 101 

4 26.2O 0.60d 3.4 102i 

ako .9O. b 
f0.6O. (5 0.476, CHC13). d?0.6°. e?0.1 unless noted otherwise. fRecovered 

1 was slightly enriched in 
18 

O-content relative to starting material, presumably due to an 180_ 

isotope effect on benzyl carbon-oxygen bond cleavage. gPercent of 1 with equal amounts of 180 

at ether and carbonyl positions. 
h 
+0.3. 'Calculated with an assumed value of 6.8% for the 

total l8 O-content (not determined in run 4). 

The combination of intramolecular racemization and 
18 

O-equilibration for (+>-1. in TFE is con- 

sistent with the intermediacy of ion pair 9. Thus, reorganization of ion pair 2 and its col- 

lapse to 1 apparently compete with its dissociation. In methanol-water, if 9 is an intermedi- - 

ate, it either does not return to 1 at all, - or does so before reorganization resulting in 

racemization can occur. 
15 
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